37,878 research outputs found

    Quantum tunneling through planar p-n junctions in HgTe quantum wells

    Full text link
    We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band-structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction. The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong Rashba spin-orbit interaction.Comment: 4 pages, 4 figure

    A theory for magnetic-field effects of nonmagnetic organic semiconducting materials

    Full text link
    A universal mechanism for strong magnetic-field effects of nonmagnetic organic semiconductors is presented. A weak magnetic field (less than hundreds mT) can substantially change the charge carrier hopping coefficient between two neighboring organic molecules when the magnetic length is not too much longer than the molecule-molecule separation and localization length of electronic states involved. Under the illumination of lights or under a high electric field, the change of hopping coefficients leads also to the change of polaron density so that photocurrent, photoluminescence, electroluminescence, magnetoresistance and electrical-injection current become sensitive to a weak magnetic field. The present theory can not only explain all observed features, but also provide a solid theoretical basis for the widely used empirical fitting formulas.Comment: 4 pages, 2 figure

    Fermi resonance-algebraic model for molecular vibrational spectra

    Full text link
    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to fit the recently observed vibrational spectrum of the water molecule and arsine (AsH_3), respectively, and results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method for describing molecular vibrations with small standard deviations
    corecore